Managing TDS in the Upper Monongahela River Basin Project WRI 119

Paul Ziemkiewicz, PhD Director West Virginia Water Research Institute 17 Aug 10

West Virginia University

Pittsburgh Basin-Major AMD plants

Estimated TDS loads (tpy) from Upper Mon AMD treatment plants

	average	maximum	full pump
	observed	observed	capacity
Dunkard Ck	153,340	190,784	257,950
Robinson Run (Mon Co.)	11,000	22,000	17,600
Flaggy Meadows Run	12,205	34,166	47,300
Indian Ck	12,975	30,008	115,500
Paw Paw Ck	2,200	4,400	11,550
Buffalo Ck	10,043	36,938	36,300
Robinson Run (Marion Co.)	3,900	9,779	27,500
Total	205,662	328,075	513,700

Dunkard Creek

West Virginia Water Research Institute

Managing TDS

How much TDS is coming from AMD treatment plants?
What is the assimilative capacity of Mon and tribs?
How does that vary through the year?
Can a coordinated pumping plan be developed?
How to measure compliance?

Managing TDS in the Monongahela River Basin Things that can be done in the near term

- Develop relationship between flow and TDS
- Management tools:
 - Identify Assimilative Capacity
 - Coordinate release of treated AMD With higher river flows
 What are the critical flows in the Mon and the tributaries?
 Manage by month? Season? Instantaneous flow?
- Will require:
 - Monitoring program: chemistry and flows
 - Organization/Coordination: Industry TDS Working Group
 - Understanding of mine water storage capacities
 - More responsive pumping systems
- Alternatively we'll probably see end of pipe discharge limits for TDS

The relationship between flow (x)and [TDS] (y)

Pt. Marion PA $v = 3384.7x^{-0.337}$ $R^2 = 0.37$ 26 28 Q (kcfs) West Virginia Water Research Institute

Flow in the Monongahela R. at Masontown PA is greater than 3,000 cfs 60% of the time

West Virginia Water Research Institute

At near maximum mine pumping rates, the [TDS] in Dunkard Ck will respond to flow Q > 192 cfs ~50% of the time

TDS load	Q	[TDS]
tpy	cfs	mg/L
250,000	50	5051
250,000	150	1684
250,000	250	1010
250,000	350	722
250,000	450	561

West Virginia Water Research Institute

The relationship among: flow, TDS Load and resulting [TDS] in Dunkard Ck.

Remember: the total load from AMD treatment plants on Dunkard Ck. normally ranges between 150,000 to 300,000 tpy

Q (Dunkard Ck)	30	120	300	cfs
TDS load	148,170	148,170	296,340	tons/yr
[TDS]	5,000	1,250	1,000	mg/L

Organization: Coal Industry TDS Working Group

- Formed in January 2010
- Consists of the major coal producers in the upper Monongahela basin
- Supported by ongoing TDS monitoring and assessment carried out by the WV Water Research Institute

11

Some recent findings

12

Monongahela R. @ Pt. Marion PA

Monongahela R. @ Masontown PA

West Virginia Water Research Institute

Monongahela R. @ Elizabeth PA

Youghiogheny R. @ Sutersville PA

Dunkard Ck. @ Bobtown PA

Monongahela river TDS loading 24 June 2010

Station ID

The Chloride to Sulfate ratio may be a good indicator of mining vs. brine water

Average Cl/SO4 July 09 to June 10

Road salt does not explain the high [TDS] WVDOH consumption: July 09 to June 10 (that covers an exceptionally snowy winter)

Marion	tons	Monongalia	tons	
Mannington	1,390	Goshen	5,462	
Fairmont	2,636	Pentress	962	
subtotal	4,026	subtotal	6,424	
Preston		Taylor	3,535	
Albright	2,145			
Aurora	1,485	Interstates		
Bruceton	2,572	I 79-Goshen Rd (PA to exit 132)	4,379	
Fellowsville	1,009	I 68-Coopers Rock (MD to I-79)	4,544	
Terra Alta	1,209	subtotal	8,923	
subtotal	8,420			
		Total	31,328 tpy	

Current USGS Flow and EC data for Dunkard Ck: [TDS] between 700 and 3,000 mg/L

USGS 83872988 Dunkard Creek at Shannopin, PR 58 Discharge, cubic feet per second 40 38 haven AM ANAM Δ 20 10 Rue flug Rug **Bue** Rup filue: Rug **Bue** 18 12 13 14 I 15 16 17 11 2616 2818 2818 2818 2818 2818 2818 2818 Provisional Data Subject to Revision

🛆 Median daily statistic (69 years) —— Discharge

USGS 394533079581501 DUNKARD CREEK AT SHANNOPIN, PA 4500 nce, water, ns per centimeter Celsius 4000 3500 conductance, 3000 Specific conductanc unfiltered, nicrosiemens at 25 degrees Ce 2500 2000 1500 1000 500 Jul Jul Jul Jul Jul Jun Jun Aug Aug 26 03 17 24 07 14 19 10 31 2010 2010 2010 2010 2010 2010 2010 2010 2010 Provisional Data Subject to Revision

Graph courtesy of the U.S. Geological Survey

Conclusions:

- None of the TDS constituents are cumulative or toxic at reasonable concentrations
- Upper Mon AMD plants generate between 200,000 and 500,000 tpy of TDS
- That accounts for between 20 to 100% of TDS in the Mon
- For much of the year the Mon can easily assimilate that sort of loading while maintaining a [TDS] below 500 mg/L
- It should be possible to develop a managed, load-weighted discharge program to control [TDS] at the desired levels
- That will require organization, commitment, transparency and accountability

Questions?

Managing TDS in the Monongahela River

Paul Ziemkiewicz, PhD Director West Virginia Water Research Institute West Virginia University

West Virginia Water Research Institute